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Abstract: Since von Neumann's seminal work around 1950, computer scientists and oth-
ers have studied the algorithms needed to support self-replicating systems. Much of this work

has focused on abstract logical machines (automata) embedded in two-dimensional cellular
spaces. This research was motivated by the desire to understand the basic information process-
ing principles underlying self-replication, the potential long term applications of programmable
self-replicating machines, and the possibility of gaining insight into biological replication and
the origins of life. We view past research as taking three main directions: early complex

universal computer-constructors modeled after Turing machines, qualitatively simpler self-
replicating loops, and e�orts to view self-replication as an emergent phenomenon. We discuss

our recent studies in the latter category showing that self-replicating structures can emerge
from non-replicating components, and that genetic algorithms can be applied to automatically

program simple but arbitrary structures to replicate. We also describe recent work in which
self-replicating structures are successfully programmed to do useful problem solving as they

replicate. We conclude by identifying some implications and important research directions for
the future.
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1. MODELING SELF-REPLICATION

Computational modeling of self-replicating structures/machines has often been based on

cellular automata. We view these cellular automata models as primarily taking three ap-

proaches. First, early self-replicating structures (1960's and 1970's) were large, complex uni-

versal systems modeled after Turing machines. They provided the �rst demonstration that

arti�cial self-replicating structures could in principle be devised and stimulated substantial

theoretical work. A second generation of self-replicating structures, self-replicting loops stud-

ied since the mid 1980's, were designed to be qualitatively simpler than their predecessors.

This was done by relaxing the criteria that self-replicants must also be capable of universal

computation and construction. More recently, we and others have taken a third approach that

focuses on self-replication as an emergent property rather than, as in the past, being based

solely on manually designed replicants. This work has shown that self-replicating structures

can emerge from initially random states, and that rules to control self-replication can be dis-

covered using arti�cial evolution methods (genetic algorithms). It has also been established

that self-replicating structures can be used to solve problems while they replicate.

The models of self-replication considered below are implemented in a cellular automata

framework [8, 10, 32]. With any cellular automata model each cell's state transitions are

governed by a set of rules forming the transition function. Each transition rule is simple and

based solely on locally-available information. The \locality" of computation, that is, the fact

that each cell can change its state based only on the state of its neighbors (including its own

current state), is a fundamental aspect of cellular automata computation. In spite of such

localized information processing, experience has shown that the complete set of transition

rules, through their application by all of the cells in the model simultaneously and repetitively

over time, can produce very rich and at times striking behavior.

The mathematician John von Neumann �rst used cellular automata to study the logi-

cal organization of self-replicating structures [31]. In his and most subsequent work, two-

dimensional cellular automata spaces are used, and cells can be in one of several possible

states. At any moment most cells are quiescent or inactive; those cells that are active are said
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to be components. A self-replicating structure is represented as a con�guration of contiguous

active cells, each of which represents a component of a replicating machine. Since at each

instance of simulated time, each cell determines its next state as a function of only its current

state and the state of immediate neighbor cells, any self-replicating structures observed in

the models we consider must be an emergent behavior arising from strictly local interactions.

Based solely on these concurrent local interactions, an initially-speci�ed self-replicating struc-

ture goes through a sequence of steps to construct a duplicate copy of itself (the replica being

displaced and perhaps rotated relative to the original).

Von Neumann's original self-replicating structure is a complex universal computer-

constructor embedded in a large, two-dimensional cellular automata space that consists of

29-state cells. It is based on the 5-neighborhood (von Neumann neighborhood), and is lit-

erally a simulated digital computer (Turing Machine) that used a \construction arm" in a

step-by-step fashion to construct a copy of itself from instructions on a \tape". The initial

machine is said to be a universal constructor in that it can construct a copy of any structure

properly speci�ed on its tape [3]. It can also copy its input tape and attach it to the new

structure. Self-replication can thus occur if the original machine is given a tape with a de-

scription of its own structure. One of the important concepts introduced in von Neumann's

universal computer-constructor is that of a data path over which signals can ow. The design

of von Neumann's original universal computer-constructor can be found in [3, 31].

While the work by von Neumann established that arti�cial self-replication is possible,

it left open the question of the minimal logical organization necessary for self-replication

[3, 31]. Much subsequent work focused on �nding simpler self-replicating structures. For

example, investigators showed that some simpli�cation of von Neumann's con�guration was

possible by redesigning speci�c components [29] or by increasing cell state complexity [2].

Most inuential among this early work was Codd's demonstration that if the components or

cell states meet certain symmetry requirements, then von Neumann's model could be done in

a simpler fashion using cells having only eight states rather than the 29 used originally [7].

Codd argued that using components that were symmetrical led to a simpler model, and he

created a universal computer-constructor that was simpler but otherwise similar in spirit to
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that of von Neumann's. Another approach taken to reducing the complexity of von Neumann's

design in a 2D cellular space focused on using more complex components [2].

2. SELF-REPLICATING LOOPS

While these early studies describe structures that self-replicate, the structures involved

generally consist of tens of thousands of components or active cells, and their self-replication

has thus never actually been simulated computationally because of their tremendous size and

complexity. Only recently has a simpli�ed version of von Neumann's universal computer-

constructor been implemented [24]. The complexity of these early cellular automata models

seems consistent with the remarkable complexity of biological self-replicating systems: they

appear to suggest that self-replication is an inherently complex phenomenon. More recent

work with self-replicating loops provides evidence that this is not necessarily so.

A much simpler self-replicating structure based on 8-state cells, which we refer to as a

self-replicating sheathed loop, was developed by Langton in the mid-1980's (see Fig. 1b) [14].

The term \sheathed" here indicates that this structure is surrounded by a covering or sheath

(X's in Fig. 1a-c). Consider Fig. 1a where a non-replicating loop plus arm (the latter coming

o� the lower right of the loop) is shown. The loop consists of a core of cells in state O and a

sheath of cells in state X. In this case, a signal + followed by a blank space (quiescent cell)

circulates around the data path forming the loop. Each time the signal reaches the lower-right

branch point where the arm extends from the loop, a copy of it passes out the arm. Non-

replicating loops like this served as storage elements in the universal computer-constructors

designed by von Neumann and Codd.

Fig. 1b shows the initial state of a self-replicating sheathed loop [14]. The signal or

instruction sequence + + + + + + L L that directs replication is embedded in the core of O's

forming a loop similar to that shown in Fig. 1a (reading clockwise around the loop starting

at the lower right corner). As copies of this circulating signal sequence periodically reach the

end of the arm, they trigger the growth and turning of that arm to form a duplicate loop

in the nearby cellular space. The instruction sequence is used both as instructions that are
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a.    XXXXXXXX           b.   XXXXXXXX
     XOOOOOOOOX              XO+ OL OLX
     XOXXXXXXOX              X XXXXXX X           c.    XX
     XOX    XOX              X+X    XOX                XLOX
     XOX    XOX              XOX    XOX                XL+X
     XOX    XOX              X X    XOX                 X*
     XOX    XOX              X+X    XOX
     XOXXXXXXOXXXXX          XOXXXXXXOXXXXX
     XOO +OOOOOOOOOX         X +O +O +OOOOOX
      XXXXXXXXXXXXX           XXXXXXXXXXXXX

d.   -O+-O+-OL-OL
     +          -         e.
     O          O             O+-OL-OL
     -          O             -      -        f.          g.
     +          O             +      O           OOO         OO
     O          O             O      O           O O         L+OO
     -          O             -      O           L++OO
     +          O             +      O
     O          O             O      O
     -          O             -+O-+O-+OOOO
     +          O
     O-+O-+O-+O-+OOOO

h.   OO<OO<LLOOOO
     v          O         i.
     O          O           OO<LLOOO
     O          O           v      O        j.          k.
     v          O           O      O           OOO         OO
     O          O           O      O           O O         L>OO
     O          O           v      O           L>>OO
     v          O           O      O
     O          O           O      O
     O          O           >OO>OO>OOOOO
     v          O
     OO>OO>OO>OO^OOOO

Figure 1: Self-replicating loops in two dimensional cellular automata. Cells in the quiescent
state are indicated by blank spaces. (a) Sheathed but non-replicating loop. A core of O's

is surrounded by a sheath of X's. A single signal (+ followed by blank space) repeatedly
circulates counterclockwise around the loop. (b) A self-replicating sheathed loop; (c) A small
self-replicating sheathed loop[4]; (d)-(g) Unsheathed self-replicating loops; (h)-(k) Unsheathed
self-replicating loops.

interpreted to direct the construction of a replica, and as uninterpreted data that is copied

onto the replica [14]. Thus, self-replicating loops are truely \information replicating systems"

in the sense that this term is used by organic chemists [21].

The \program" of the replicating sheathed loop, pictured in Fig. 1b, consists of individual

instructions+, meaning \extend the current data path one cell", and LL, meaning \extend and

turn left". Thus, the sheathed loop's instruction sequence ++++++LL can be interpreted

as \extend the data path forward seven cells, then turn left". As this instruction sequence

passes out the loop's arm it is \executed" as it reaches the end of the arm or growing structure.

Each time the instructions are executed they generate one side of a new loop. Thus, executing

these instructions four times causes the arm to repeatedly extend and turn until a second loop

is formed, detaches, and also begins to replicate, so that eventually a growing \colony" of
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self-replicating loops appears.

We hypothesized that sheathed loops could be modi�ed to produce even simpler and

smaller self-replicating structures [25]. An unsheathed version of the original sheathed loop is

shown in Fig. 1e. The signal sequence +{+{+{+{+{+{L{L{ directing self-replication of this

unsheathed loop is the exact same program as that of the sheathed loop, but written using

di�erent \instruction codes" (+{ for \extend", L{ for \extend and turn left"). As illustrated

in Fig. 2, as the elements of the instruction sequence reach the tip of the construction arm,

they cause it to extend and turn left periodically until a new loop is formed. A \growth cap" of

X's at the tip of the construction arm enables directional growth and right-left discrimination

at the growth site (seen in Fig. 2b-d). As shown in Fig. 2e, after 150 iterations or units of time

the original structure (on the left, its construction arm having moved to the top) has created

a duplicate of itself (on the right). After several generations a single initial unsheathed loop

results in an expanding \colony" where actively replicating structures are found only around

the periphery.

Successful removal of the sheath makes it possible to create a whole family of self-replicating

unsheathed loops using 8-state cells and strongly rotation-symmetric cell states. Examples

of these self-replicating structures are shown in Fig. 1d-g. Each of these structures is imple-

mented under exactly the same assumptions about the number of cell states available (eight),

rotational symmetry of cell states, neighborhood, isotropic and homogeneous cellular space,

and so forth, as sheathed loops within Codd's framework [7]. The smallest unsheathed loop

in this speci�c group (Fig. 1g) is more than an order of magnitude smaller than the original

sheathed loop and requires only 174 transition rules.

In the past, there has been disagreement about the desirable rotational symmetry require-

ments for individual cell states as represented in the transition function. The earliest cellular

automata models, such as von Neumann's, had transition functions satisfying weak rotational

symmetry: some cell states were directionally oriented [3, 29, 31]. These oriented cell states

were such that they permuted among one another consistently under successive 90� rotations

of the underlying two-dimensional coordinate system. For example, the cell state designated
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a.                   b.                    c.                 X
    OL-OL-OO             OL-OOOOO              -O+-O+-O      XO+-
    -      O             -      +              +      L       X O
    +      O             L      -              O      -         +
    O      O             O      O              -      O         -
    -      +             -      +              +      L         O
    +      -             +      -              O      -         +
    O      O             O      O   X          -      O         -
    -+O-+O-+O-+O         -+O-+O-+O-+OX         +O-+OOOOO-LO-LO-+O
                                    X

                                       O
                                       +
d.                          e.         -
                                       O
    OL-OL-OO  -O+-O+-O          OOOO+-O+  O+-OL-OL
    -      O  +      +          O      -  -      -
    +      O XOX     -          -      O  +      O
    O      O  X      O          L      +  O      O
    -      +         L          O      -  -      O
    +      -         -          -      O  +      O
    O      O         O          L      +  O      O
    -+O-+O-+O-+OOOOO-L          O-+O-+O-  -+O-+O-+OOOO

Figure 2: Successive states of a self-replicating unsheathed loop starting at time t=0. The
instruction sequence repeatedly circulates counterclockwise around the loop with a copy pe-
riodically passing onto the construction arm. At t=3 (a) the sequence of instructions has
circulated 3 positions counterclockwise with a copy also entering the construction arm. At
t=6 (b) the arrival of the �rst + state at the end of the construction arm produces a growth

cap of X's. This growth cap, which is carried forward as the arm subsequently extends to
produce the replica, is what makes a sheath unnecessary by enabling directional growth and
right-left discrimination even though strong rotational symmetry is assumed (see text). Suc-
cessive arrival at the growth tip of +'s extends the emerging structure and arrival of L's causes
left turns, resulting in eventual formation of a new loop. Intermediate states are shown at

t=80 (c) and t=115 (d). By t=150 (e) a duplicate of the initial loop has formed and separated
(on the right); the original loop (on the left, construction arm having moved to the top) is
beginning another cycle of self-directed replication.

" in von-Neumann's early work is oriented and thus permutes to di�erent cell states !, #,

and  under successive 90� rotations; it represents one oriented component that can exist

in four di�erent states or orientations. However, Codd's simpli�ed version of von Neumann's

self-replicating universal constructor-computer [7] and the simpler replicating loops ([14] and

Fig. 1d-g) are based upon more stringent criteria called strong rotational symmetry. With

strong rotational symmetry all cell states are viewed as being unoriented or rotationally sym-

metric.

A second family of self-replicating unsheathed loops was developed, as shown in Fig. 1h-k,

whose initial state and instruction sequence are similar to those already described in Fig. 1d-g.

However, for the structures in Fig. 1h-k weak symmetry is assumed, and the last four of the

eight possible cell states :O#L^ > _ < are treated as oriented. In other words, although
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                                                                <
OO        O<           vL           LO O         OO^O<        O< vL
L>OO      OL>O         OOL>         >OOL^        L>OOL        OLvOO

              O            O           O            O
 #<           O            O           O            ^
vL LO        LO OO        OO O<       O^ vL        vL LO
OO >O        >O L^        L^ OL       OL OO        OO vO
  >            >#            O           O            O
                             O           O            O

Figure 3: This small self-replicating loop uses only �ve unique components. Shown here are

eleven immediately successive structures ordered left to right, top to bottom. Starting at

t = 0, the initial state shown at the upper left passes through a sequence of steps until at

t = 10 (last structure shown) an identical but rotated replica has been created.

there are still 8 states, the cell state ^ is considered to represent a single component that has

an orientation and thus can exist pointing up or in the three other directions >, _ and <.

The remaining four cell states (. O # L) are unoriented. For example, in Fig. 1i the states

>, _, and < appear on the lower, left and upper loop segments, respectively, to represent

the instruction sequence <<<<<< LL. While cells in such a model have 8 possible states

and are thus comparable in this sense with the above work on sheathed and unsheathed loops

(Fig. 1a-g), they also can be viewed as simpler in that they have only 5 distinct possible

components. Relaxing the strong rotational symmetry requirement like this consistently led

to transition functions requiring fewer rules than the corresponding strong symmetry version

[25]. This simplicity and speed of replication made possible by weak rotational symmetry are

illustrated in Fig. 3 where the complete �rst replication cycle of a small unsheathed loop is

shown. Only 31 rules are needed to direct replication.

4. EMERGENCE OF SELF-REPLICATION

The self-replicating structures described so far have all been initialized with an original

copy of the structure that will replicate (the \seed") and have been based on manually created

transition rules designed for that single, speci�c structure. Recently, we have taken a di�erent

direction in creating self-replicating structures, focusing on self-replication as an emergent

property. In this section we give two examples of our work in this area.

4.1. Emergence of Replicators
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Recent work by our group has shown that it is possible to create cellular automata models

in which self-replicating loops emerge from an initial state having a random density and

distribution of components (the \primordial soup") [5]. These emergent self-replicating loops

employ a general purpose rule set that supports replication of loops of di�erent sizes and

their growth. This rule set also allows random changes of loop sizes and interactions of self-

replicating loops within a cellular automata space containing free-oating components. An

example running in a randomly initialized, small (40 � 40) cellular automata space using an

initial component density of 25% is shown in Figure 4. Periodic boundary conditions are used

(opposite edges are taken as connected), so the space is e�ectively a torus. Initially, at time

t = 0 (upper left of Figure 4), the space is 25% �lled by randomly placed, non-replicating

components designated as O, >, or L, while cells in the quiescent state are indicated by blank

spaces. All components have strong rotational symmetry except > which is viewed as being

oriented.

This simulation is characterized by the initial emergence of very small, self-replicating

loops and their progressive evolution to increasingly large and varied replicants. During this

process a replicating loop may collide with other loops or with free-oating components, and

either recover or self-destruct. Thus, by time 500 (upper right of Figure 4), very small self-

replicating loops of size 2 � 2 and 3 � 3 are present. By time 1500 a 4 x 4 loop is about to

generate a 5 x 5 loop in the middle left region. At time 3000 the biggest loop is 8 x 8 and it

is about to generate a 9 x 9 loop. By time 5000 many very large loops have annihilated each

other and only one intact 10 x 10 loop is left. By time 7500 all large loops have \died", but

there are new 3 x 3 loops in the space. These loops will replicate and it is not clear when (if

ever) self-replication will cease. In this example, the size of the replicating structures became

too big to �t comfortably in such a small world (40� 40 only), and the large loops tended to

annihilate each other.

As can be seen from this example, the transition function supporting these self-replicating

loops di�ers from those used in previous cellular automata models of self-replication in several

ways. A self-replicating structure emerges from an initial random con�guration of components

rather than being given, replication occurs in a milieu of free-oating components, and repli-
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Figure 4: A running example of emergent self-replication. Times are shown.
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cants grow and change their size over time, undergoing annihilation when replication is no

longer possible. All of this occurs in the presence of a single transition function based on the

9-neighborhood. As is increasingly being done in cellular automata modeling, the transition

function is based on a functional division of data �elds [30]. As seen in Figure 5, the bit

depth of a cellular automata cell (in our case 8 bits) is functionally divided into four di�erent

�elds (4, 2, 1 and 1 bits each) such that each �eld encodes di�erent meanings and functions to

the rule writer. The utilization of �eld divisions greatly simpli�es the cellular automata rule

programming e�ort, and makes the resulting rules much more readable. In the illustrations

in this paper, only the component �eld is shown.

bits

component

special

growth

bound

4

2

1

1

states

16

4

2

2

fields

A Cell

Cellular Automata Space
Within a cell

component

special

growth

bound

Figure 5: The 8 bit state variable in each cell is conceptually sliced into four di�erent bit
groups called �elds. Each �eld represents a speci�c piece of information.

As noted earlier, each non-quiescent or active cell is taken to represent a potential \com-

ponent" of a cellular automata structure. A cellular automata structure can be just a single

cell, i.e., one with no conceptual connection with any adjacent non-quiescent cells, and in that

case we call it an unbound component. On the other hand, a cellular automata structure can

consist of several contiguous non-quiescent cells that are functionally interrelated, behaving

as a whole, such as a self-replicating loop. In the latter case we call the structure a multi-

component structure or simply a structure, and we call its components bound components

(their bound bit is set; see Figure 5).
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The four data �elds (Figure 5) and their states in the transition function are as follows. The

four-bit component �eld accounts for most normal operations of cellular automata structures.

It encodes twelve state values (out of 16 possible) corresponding to components just as in the

previous examples we have seen. These include O (building block of data paths), > (signals

growth of data path; this actually represents four states), B (birth of new component), L (left

turn signal), C (corner), and D, E, F (branching/detachment). There is also the quiescent

state which is as usual shown as white space in all �gures. The other �elds are new. A two-bit

special �eld denotes special situations that arise occasionally in the cellular automata space,

such as branching, blocking passage of signals on a data path, or dissolution of a loop. A

one-bit growth �eld, if set, marks a stimulus that may cause the existing signal sequence to

increase in length. A one-bit bound �eld, if set, marks a cell as part of a multi-cell structure;

otherwise the cell is an unbound component.

The complete set of rules forming the transition function support replication of loops in a

fashion similar to those used in the past [14, 25]. In addition, a loop's replicant can be of a

di�erent (larger) size, a process referred to as extended replication. A loop's signal sequence

can become modi�ed to generate loops larger than itself if by chance an active growth �eld

appears in one of its cells during the arm branching process. Cellular automata rules that

support extended replication are new. In the past, a di�erent rule set has been required for

each size replicating loop; here the emergence of di�erent size loops and their simultaneous

replication is supported by a single rule set. This permits an initially small emergent self-

replicating structure to grow in size.

Another new aspect of this model is collision detection and resolution. In all past work

on self-replicating loops, replication occurs in an otherwise empty space and the transition

function does not need to handle unanticipated events. In other words, while writing the

rules one has complete control over the behaviors occurring in the cellular automata space,

including the initial state. In contrast, here the very �rst assumption is that there is no a

priori knowledge about the interactions between self-replicating loops, or what the cellular

automata space is like at time zero. Although the rules in the previous models of replication

that we have considered so far can reliably direct a structure to do replication in isolation, they
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cannot guarantee that a structure will not run into another structure, that two structures will

not try to replicate into the same region of the cellular automata space, or that a replicating

loop will not run into free-oating unbound components. These factors are all \randomly"

determined. The transition function used here thus assumes that not all designated regular

procedures will always be followed without interruption or disturbance from other structures.

It includes rules that will detect failed procedures and clean up the cellular automata space

after such failures. When a loop has any of its cells enter a failure mode, this mode quickly

spreads throughout the whole structure, causing the loop to dissolve completely. The loop's

components become unbound and revert to being controlled by the rules governing unbound

components.

There is no a priori information about when and where growth bits should be placed in

this model of emergent replication, and none are set initially. In the example shown here,

whenever a signal L dissolves or \dies", it leaves behind a growth bit at its location. A loop

usually has only one L signal, so one dissolving loop usually produces one new growth bit in

the cellular automata space. The growth bit is utilized during the arm branching phase of a

self-replicating loop to extend the signal sequence in a loop. As shown in Figure 6, this is a

two step strategy. First, if a signal > �nds a growth bit in its place and it is the last > before

the signal L, it does not copy the signal L behind itself as it normally does. Instead, it stays

at its current value > for one more time step, thus e�ectively increasing the size of the signal

sequence by one. The signal L disappears temporarily since it is not copied, but reappears

when the signal > sees a trailing signal F and the growth bit in its position. The growth bit

is unset after the signal L is regained, so the same growth bit does not cause another growth

stimulus. Thus, when a loop dies, it leaves a growth bit behind, and when a loop expands, it

consumes a growth bit. This provides an interesting ecological balancing factor in the cellular

automata universe.

The emergence of self-replication is achieved by allowing the unbound components to

translate and change or appear at \random", i.e., by \stirring the primordial soup", until the

con�guration corresponding to a small (2 x 2) loop occurs by chance. The rules that do this

can be summarized by:
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Figure 6: The growth of a larger loop (extended replication). At time 0 the branch special
ag in the lower left cell and the growth bit in the middle right cell are both set. At time
2 the normal arm branching EF signal sequence is generated. At time 3 the signal sequence

becomes >>> and subsequently the growth bit is unset. By time 8 the parent loop is about
to start the replication cycle with one more > signal than it normally has. By time 47 a whole
new loop bigger than the original one is generated. By time 58 the two loops have separated
and the original one is just about to start another replication cycle. At time 69 the new, larger
loop is �nished and is starting its own replication cycle.

� If a quiescent cell has exactly three active neighbors, it becomes active at the next time

step. Its active value is determined based on the state of its neighbors.

� If an active cell has exactly two or three active neighbors, it will stay active; otherwise,

an active cell will return to the quiescent state at the next time step.

These rules, are generalizations (from binary to non-binary states) of those used in the Game

Of Life, and generally produce a continually varying distribution of unbound components. All

that is then required for the emergence of self-replication is a small set of rules that watch

for the formation of the smallest loop con�guration (a 2 x 2 loop). Once such a con�guration

occurs, all four members of it simultaneously set their own bound bit and produce an active
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Figure 7: The emergence of a self-replicating structure. Components of structures are marked
by a non-zero bound bit, or an '!' mark. At time 0 a randomly generated initial space is
given. This space has only unbound components until time 8, when the pattern of the smallest
replicating loop (circled) appears. At time 9 this con�guration turns into a functioning self-
replicating loop when its four cells set their bound bit simultaneously (set bound bits are
indicated by faint exclamation points). Its peripheral cells clear and the arm branching process

begins (times 10 to 13). By time 28 the �rst sibling is about to separate. By time 51 four
loops are obtained and all are actively engaging in the replication processes.

smallest loop at the next time step. This is how the �rst self-replicant is formed. This is

possible using only local operations because the minimum loop con�guration is so small that

it �ts within a single 9-neighborhood, allowing each component to simultaneously \see" the

same con�guration. An example of how the unbound component rule set works and how it

leads to the �rst self-replicating structure is demonstrated in Figure 7.

The behavior of this model of emerging self-replication has been examined experimentally

[5]. Eighty one simulations were conducted while varying the cellular automata space size

(50 x 50, 100 x 100, 150 x 150 and 200 x 200), initial unbound component density (10%,

20%, 30%, 40% and 50%) and random initial con�guration used in each simulation. In 80 of

these 81 simulations, self-replicating loops emerged, and usually these persisted inde�nitely
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The emergence, proliferation and persistence of self-replicating loops were found to be robust

phenomena relatively insensitive to the initial conditions of a simulation. There is a very stable

and characteristic dynamics under the emergent self-replicating rule set. In fact, the number

of active cells, and the fraction of bound/unbound components, always tended to approximate

a long-term stable value. This value depends on an interaction between the rules governing

replication and these governing movement of unbound components, and not on either of these

subsets of rules alone. The number and size of replicating loops generally stabilizes too. After

a few thousand time steps, there is typically no signi�cant change in the average number and

size of loops in the cellular automata space. These values tend to oscillate in a non-periodic,

varying-amplitude fashion about a mean, suggesting an underlying chaotic dynamics.

These results show for the �rst time that non-trivial self-replicating structures can emerge

in a cellular automata space initialized with a randomly distributed set of components. Some

other computational studies of emergent self-replication have been done (see Chap. 28 of [13],

and [22]), but these have not used cellular automata methods. For example, the investigation

in [22] used a very di�erent (non-cellular automata) model having an initial state composed

of randomly generated sequences of computer operations. It evolved self-replication via a

mutation operation. The primary conclusion, backed up by simulation results, was that the

probability of a randomly generated sequence of operations becoming self-replicating increased

with the number of computer operations it contained. Further, self-replicating sequences

decreased in size once they appeared. The cellular automata model described here shows

that such behaviors are not necessarily an inherent aspect of emergent self-replication, in that

very small self-replicants can arise �rst and then increase in size, as is often argued to have

occurred with the origins of biological replication. We attribute the di�erences in results to

the fact that our cellular automata model starts with random individual components rather

than random initial sequences of computer operations, that its rules were hand crafted, and

that cellular automata are based solely on highly local operations (e.g., there is no global copy

operation that copies a loop to a nearby region of the space).

4.2 Evolving Replicator Rules
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Previous computational models of self-replication using cellular automata have been man-

ually designed, a di�cult and time-consuming process that is prone to the subjective biases of

the implementer. As an alternative, we have recently shown that it is possible to automatically

discover rules for self-replication using genetic algorithms [15, 16]. While work in this area

is just beginning and the structures used so far are quite small, initial results have already

created a new class of non-trivially replicating structures unlike those developed previously.

Relatively few previous studies have reported using genetic algorithms (or related

techniques) to automatically produce rule tables for cellular automata (see, for exam-

ple, [1, 20, 26]). With the exception of our preliminary report [15], there are no past reports

of using GAs to discover self-replicating structures in cellular space models. Such research

has most likely not been undertaken for at least two reasons. First, the computational load

can become enormous. Rule tables for modest systems can quickly grow extremely large (e.g.,

25,000 transition rules for a ten-state, �ve-neighbor, strongly rotation symmetric model), and

manipulating numerous large rule tables with a genetic algorithm is very computationally ex-

pensive. Second, identi�cation of an e�ective �tness functions is a di�cult task. Apparently

obvious �tness function, such as those that simply count the number of replicants, are useless

early on as there will typically be no replicants. Further, comparing a developing structure to

a prede�ned replicant template by way of pattern matches fails to give partial credit during

the replication cycle itself, when the structure has changed its con�guration as it undergoes

replication. In other words, it is not obvious in advance at which time steps the quality of

self-replication should be decided. Using cellular space state data from a single time step

would require knowing a priori in which con�guration will replicants appear and assumes

that replicants appear all at once rather than at di�erent time steps.

Fortunately, it has proven possible to solve these problems, at least to a limited extent

[15, 16]. The genetic algorithm we used begins by generating a population of randomly

initialized rule tables, and uses these to execute cellular automata simulations, each starting

with the same initial structure. Following these simulations, each rule table in the population

receives a �tness measure F reecting the degree to which its rules appear promising as a

means of supporting self-replication. A new population is then created, randomly choosing
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Figure 8: Encoding of a rule table used to represent a chromosome.

rule tables to carry forward to the new population in proportion to their �tness. As the new

population is formed, rule tables from the old population are combined through crossover, and

randomly altered by mutation. At this point, the whole process iterates, this time starting

with the new population of rule tables and discarding the old. Typical parameter values

in a simulation include a population of 100 rule sets examined over 2000 generations, with

probabilities of crossover and mutation of 0.8 and 0.1, respectively. At the end of this process,

the most highly �t rule table is returned as a potential transition function supporting self-

replication with the given initial structure.

Figure 8 shows the encoding of a rule table used by the genetic algorithm in this process,

i.e., a chromosome representing one individual in the population. The rule table is indexed

on the left by the 5-neighborhood pattern CNESW (center, north, east, south, west), and

rules for each speci�c component are grouped together. Each rule has a \next state" entry

indicating what the center cell component C should become at the next time step for the given

neighborhood pattern. By adopting the convention that a rule for every possible neighborhood

pattern must be represented in a chromosome, and that these are always in the same order, it

is not necessary to explicitly store the CNESW neighborhood patterns. Thus a chromosome

is represented as just a list of next-state entries (i.e., just the next state list indicated on

the right in Fig. 8). For the simulations described below, chromosomes were roughly 850
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component type, and crossing over transition rules within each partition, with each crossover
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next-state elements long.

The type of crossover used here was a version of multi-point crossover whereby single-point

crossover is applied within segments marked by the heavy lines in Fig. 9 (actual component

types had many more transition rules than are shown here). A crossover point was randomly

selected within each segment, and single-point crossover occurred in each segment. Empirical

results comparing this crossover technique to that of single-point crossover (across the entire

rule table) showed better performance for the multiple application of crossovers. After selec-

tion and crossover, each transition rule was subject to mutation which occurred by randomly

choosing a new state.

Creating a �tness function F that accurately measures the promise of a rule table for

generating self-replication of an arbitrary initial structure was the most challenging aspect of

this work. None of the initial random rule tables produce replicants, so in this sense each
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has a zero �tness. This issue was addressed by creating a �tness function F that is a linearly

weighted sum of three measures, F = wg fg + wpfp + wr fr, where the w's are �xed weights

(0 < w < 1) and the f 's are �tness measures (0 � f � 1). The basic idea here is that an

intermediate state on the path to evolving rules for self-replication is the evolution of a rule set

that produces growth and/or con�gurations similar to that of the seed structure. Thus, the

overall �tness F includes a growth measure fg assessing the extent to which each component

type in a given initial structure generates an increasing supply of that component from one time

step to the next, and a relative position measure fp assessing the extent that each component

has the same neighbor components over time as it did in the initial structure. High values of

fg and fp do not necessarily imply that replication is present (although replication, if present,

would be expected to make these measures relatively large), but they do represent behaviors

that might be useful precursors to replication. The third term in F , the replicant measure

fr, is a function of the number of actual replicants present. While this is zero for many early

generations with a rule table, it can cause a substantial rise in F if actual replication occurs.

How should the three weights in F be chosen to maximize the chances of success with this

approach? There is no precise answer that can be given to this question at present. Systematic

experiments have suggested that wg = 0:05, wp = 0:75, and wr = 0:20 is a good set of values

when the weights are constrained to sum to 1.0 [16]. In other words, the relative positioning

measure proved to be the most critical factor in discovering rules for self-replication.

To assess the success of the above approach, 100 experiments were done with each of several

small arbitrary initial seed con�gurations. The rate of success in discovering rules producing

self-replication declined sharply as the number of components in the initial structure increased.

Under the best conditions, the percentage of runs in which the genetic algorithm discovered

a rule-table that resulted in self-replication was 93% for structures with two components,

22% for structures with three components, and 2% for structures with four components.

A representative example of a self-replicating structure discovered in this fashion is shown

in Figure 10. This self-replicating polyomino is a typical example. It is a four-component

replicator for which multiple replicants can be observed by t=5. Like self-replicating loops,

these structures gradually form expanding colonies.
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The replicators discovered by the genetic algorithm in this fashion can be viewed as form-

ing a third class of self-replicating structures (the �rst two classes being complex universal

computer-constructors and self-replicating loops). In addition to being formed from arbitrary

non-loop seed structures, these replicators generally move through the cellular space, deposit-

ing copies as they go, a design that has apparently never been adopted in past manually-

created cellular automata models of replication. For example, the 4-component replicator in

Figure 10 can be viewed as going through transformations as it translates to the right (rela-

tive to its initial position, which is marked by the origin of arbitrary coordinate axes in the

�gure), periodically reappearing in its original form (t=3,6,...) as it gives o� replicants in the

upper right quadrant (t=4,7,...) that themselves are rotated and moving upwards. The fact

that the self-replicating structures discovered using a genetic algorithm di�er in unexpected

ways from past designed replicants suggests that further exploration in the space of possible

self-replicating structures using genetic algorithms will yield additional new structures.

5. PROGRAMMING SELF-REPLICATING LOOPS

The concept of programming self-replicators can be traced back to von Neumann's original

universal computer-constructor [31]. The set of instructions (signals) or description on the

replicating structure's tape that describe its own structure can be viewed as the machine's

program. Similarly, the sequence of instructions that circulate around a self-replicating loop

form a program that directs the loop's replication. Such programs have only been concerned

with replication of the loop in the past. During recent years, however, the idea of programming

self-replicating loops to do more than just replicate has been receiving increasing attention.

The underlying idea is that the signal sequences directing a structure's replication can be

extended in some fashion to solve a speci�c class of problems while replication occurs. The

motivation for such programmed replicators is that they provide a novel, massively parallel

computational environment that may lead over the long term to powerful, very fast computing

methods.

One approach to programming self-replicating loops to solve problems is to extend the
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sequence of signals circulating around the loop, adding additional signals representing a pro-

gram that carries out some task. This application program is copied along with the replication

program unchanged from generation to generation as the loop replicates, and is executed once

by each loop in between replications. The viability of this approach was recently demonstrated

by programming partially sheathed loops to construct a pattern in the interior of each repli-

cated loop [28]. Using a loop with four arms based on the 9-neighborhood, it was possible to

create extra space on the loop for an application program by factoring more of the replication

process into the loop's transition function. The price paid for automatic loop growth and the

execution of an application program is in terms of the complexity of the rule set: typically,

on the order of a few hundred rules are required in this situation [28].

A practical problem with the above approach to programming self-replicating loops is the

restricted amount of space available along a loop for application programs and data. This

problem can be solved by adding \tapes" to the loops [23]. This is analogous to the tapes

used in the earliest universal computer-constructor replicators [7, 31]. With two tapes, one

can be used to store a signal sequence representing an application program, while the second

can be is used to store problem data. Using this approach with the 5-neighborhood, it has

been shown that one can program a self-replicating loop to perform parentheses checking [23].

An expression with parentheses is represented on the data tape, and the program checks that

the parentheses are well-formed or balanced, a computation that corresponds to recognition

by a non-regular language. This process uses cells having 63 states and roughly 8500 state

change rules in the transition function. It can be shown that tape-extended self-replicating

loops are capable of executing any desired program [23]. Thus, in principle such extended

self-replicating loops exhibit computational universality just as did the earliest self-replicating

structures, yet they are qualitatively simpler.

The programmable self-replicating loops described above literally encode a set of instruc-

tions on the loop or an attached tape that directs solution of a problem. This application

program is copied unchanged from parent to child, so each generation of loops is executing

exactly the same program on exactly the same data. We have recently examined a di�erent

approach in which potential problem solutions are appended to the replication instruction
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sequence circulating on a self-replicating loop [6]. Unlike past approaches, the initial problem

solution is not copied exactly from parent to child but is modi�ed from generation to gener-

ation. Each child loop gets a di�erent partial problem solution. If a loop determines it has

found a valid complete problem solution, it stops replicating and retains that solution as a

circulating pattern in its loop. On the other hand, if a loop determines its partial solution is

not useful, the loop \dies", erasing itself without descendents. Thus, the process of forming

a colony of loops can be viewed as a parallel state space search through the space of problem

solutions. At the end of this process when replication has stopped, the cellular space contains

one or more non-replicating loops, each with a circulating sequence of signals that encodes a

valid problem-solution (assuming such a solution exists).

We recently applied this approach of generating possible solutions and selectively dis-

carding non-viable ones to solve satis�ability problems (SAT problems), a classic example of

an NP-complete problem [12]. Given a boolean predicate like P = (� x1 _ x3) ^ (x1_ �

x2)^ (x2_ � x3), the SAT problem is: \What assignment of boolean values to the binary vari-

ables x1, x2 and x3 can satisfy this predicate?", i.e., what assignment can make this predicate

evaluate to True? In this case, P will be true if x1 = 1; x2 = 1 and x3 = 1, for example. The

predicate P here is in conjunctive normal form, where each part of the predicate surrounded

by parentheses is called a clause. A SAT problem is usually designated as an m-SAT problem

if there are m boolean variables in a clause of its predicate. Therefore, the above example P

is a 2-SAT problem.

Figure 11 illustrates the generate-and-select process for a self-replicating loop carrying 3

binary bits representing the three variables x1, x2 and x3 used in predicate P. In the initial

loop at t = 0, unexplored bits are represented by the symbol A. These A's replace some of

the o's forming the data path in the self-replicating loop. The original growth signal '>' is

also replaced by the symbol + reecting some minor di�erences in the replication process

(the data path symbol O used in earlier �gures has also been changed here to lower case

o typographically to avoid confusion with the digit zero). Explored bits are represented by

either digit 0 (\false") or 1 (\true") in the loops. The bit sequence that a loop carries is

read o� clockwise starting right after the L symbol. Thus, for example, the lower left loop in
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Figure 11: The generation and selection of satisfying boolean assignments by self-replicating

loops for the predicate P given in the text. The monitoring of circulating loop signals by
each cell provides the selection process. At time 0, the initial loop is placed in the cellular
automata space, and carries unexplored binary bits represented as AAA. By time 44 the �rst

replication cycle has completed and there are two loops in the cellular automata space. The
�rst binary bit has been explored, resulting in the �rst A being converted into 0 and 1 in the

two resulting loops. By time 82 the second replication cycle has completed and there are four
loops in the cellular automata space. Starting at time 84 the top loop is being destroyed (note

the missing corner cell of the loop). Its bit sequence `01A' does not satisfy the second clause
in predicate P, so it is being erased by the monitor underneath its top-right corner. At time

86 the erasing process continues while the other loops start their next replication cycle. At

time 124 the third (also the last) replication stage is completed and there are six loops in the

cellular automata space. Four of these loops do not survive the selection process for long and

are erased (times 129 and 131). Finally, two satisfying assignments 000 and 111 remain in the
cellular space at time 134.
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Fig. 11 at t = 124 carries the sequence 001.

Without a selection process, in three generations all eight possible boolean assignments for

the variables used in P would appear, carried by eight loops in the cellular automata space,

assuming that no collisions occurred. Loops stop replicating once they have explored all of

their A bits. Since the exploration of bits is done one bit at a time at each generation, and

since at each exploration step a di�erent bit appears in the parent and child loops, we can be

sure that all possible boolean assignments will be found with the generation process, if there

are no collisions of loops in the space. If collisions do occur, a loop unable to replicate initially

will continue trying until space appears for it to do so.

To remove those loops which do not satisfy a SAT predicate, each cell in the space serves

as a monitor. Each monitor tests a particular clause of the SAT predicate. If the condition a

cell is looking for in its role as a monitor is found, it will \destroy" the loop passing through

it. For the speci�c predicate P , three classes of monitors, each testing for one of the following

conditions, are planted in the cellular automata space: x1^ � x3, � x1 ^ x2, and � x2 ^ x3.

These conditions are just the negated clauses of P . If any one clause of predicate P is not

satis�ed, the whole predicate will not be satis�ed. A monitor will destroy a loop passing

through it if its corresponding clause is found to be unsatis�ed by the bit sequence carried

by the loop. This detection process is done in linear time since essentially each monitor is

just a �nite automata machine, and a bit sequence passing through it can be seen as a string

for regular expression recognition. With enough properly distributed monitors in the cellular

automata space, they can e�ectively remove all unsatisfying solutions.

Some steps of the generation and selection process for the same 3 x 3 loop are shown in

Figure 11. Starting with one initial loop carrying a totally unexplored bit sequence AAA

at t = 0, 0AA appears in the parent loop and 1AA in the child loop in the �rst generation

(t = 44). In the second generation two new loops carrying 01A and 11A are obtained; the two

parents now carry 00A and 10A. If all goes well, in the third and �nal generation, we should

get four more loops 011, 111, 001 and 101; the four parents would carry 010, 110, 000 and

100. If no selection and no collisions occurred, then there should be all eight possible values
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for a 3 bit binary sequence. However, it can be seen in this �gure that some of the loops

are destroyed or never even generated after the second generation. For example, the topmost

loop at t = 82 is erased (t = 84, t = 86). Since it has been found (by the monitors) that this

loop's partially explored bits 01A do not satisfy one of the clauses, there is no need to explore

further since all of its descendents will carry the same binary bits. In three generations only

two loops are left in the cellular automata space instead of eight (t = 134). These two loops

carry exactly the only two satisfying boolean assignments for the original SAT predicate P ,

which are 000 and 111.

6. DISCUSSION

Cellular automata models of self-replication have been studied for almost �fty years. In this

article we have presented the view that work on this topic has involved at least three di�erent

approaches. The earliest work examined large, complex universal computer-constructors that

are marginally realizable. This work established the feasibility of arti�cial self-replication,

examined many important theoretical issues involved, and gradually examined progressively

simpler self-replicating universal systems. A second and more recent approach has focussed

on the design of self-replicating loops. Self-replicating loops are so small and simple that they

have been readily realizable. Finally, we believe that a third approach merits investigation:

the emergence of self-replicators from initially non-replicating systems. As examples of this,

we discussed our recent studies of the emergence of self-replicating structures from randomly-

distributed, non-replicating components, and the evolution of transition rules that support

replication of small but arbitrary initial structures.

Recent work has also shown that programmed replicators are capable of solving non-

trivial problems. These programmed self-replicating structures are intriguing in part because

they provide a novel approach to computation. This approach is characterized by massive

parallelism (each cell in the underlying cellular automata space is simultaneously carrying out

computation), and by the fact that both self-replication and problem-solving by replicators

appear as emergent properties of solely local interactions.
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While progress in creating and studying cellular automata models has accelerated during

the last few years, a great deal remains to be done. A high level language that speci�cally

supports development of cellular automata transition functions would be of great value to

future investigations, as this is currently largely unavailable. Similarly, while hardware that

directly supports the massively parallel but local computations of cellular automata modeling

has appeared [11, 30], it is also largely unavailable today. If such software and hardware envi-

ronments could be made available in the future, it would greatly reduce the large programming

and processing times associated with research in this area1.

Among the many issues that might be examined in the future, several appear to be of par-

ticular importance. These include the further development of programmable self-replicators

for real applications, and a better theoretical understanding of the principles of self-replication

in cellular automata spaces. More general and exible cellular automata environments, such

as those having non-uniform transition functions [27] or novel interpretations of transition

functions [15], merit exploration. It has already proven possible, for example, to create simple

self-replicating structures in which a cell can change the state of neighboring cells directly [15],

or can copy its transition function into a neighbor cell while allowing cells to have di�erent

transition functions [27]. Also, from the perspective of realizing physically self-replicating de-

vices, closer ties and exchange of information between the modeling work described here and

ongoing work to develop self-replicating molecules and nanotechnology is important. Closely

related to this issue is ongoing investigation of the feasibility of electronic hardware directly

supporting self-replication [18, 19]. If these developments occur and progress, we foresee a

bright and productive future for the development of a technology of self-replicating systems.

Finally, we expect that as the modeling of self-replication progresses, it will assume in-

creasing importance in theoretical biology. Arti�cial self-replicators have already shown that

self-replication of information-carrying structures can be far simpler than many people have re-

alized [25]. Analogous conclusions about unexpectedly simple information processing require-

ments have been reached regarding other complex physical/chemical processes after cellular

1We are currently developing such a language called TREND. For information contact Dr. Chou at

hhchou@tigr.org
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automata models of them were developed, such as the appearance of stably rotating spiral

forms in the Belousov-Zhabotinskii autocatalytic reaction [9, 17]. Further, it seems probable

that the simple self-replicating structures described here are not the only ones possible. The

self-replicating structures discovered using a genetic algorithm suggest that novel approaches

still remain to be identi�ed.
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